Ваш браузер устарел. Рекомендуем обновить его до последней версии.
Buy Bitcoins with Credit Card

Flag Counter

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Оригинал статьи здесь.
    Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC. Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки ("банки") на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

 

 

 

 

 

 

 

 

 

 

 

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути "мозг" контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 - ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 - это MOSFET-транзисторы.

Типовая схема включения микросхемы DW01-PТиповая схема включения микросхемы DW01-P

 

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Цоколёвка, внешний вид и назначение выводов DW01-P

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Цоколёвка и состав микросхемы S8205A

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты в целом.

Защита от перезаряда (Overcharge Protection).

    Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage - VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от перезаряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V  (Overdischarge Release Voltage - VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за "смерть" аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер - G2NK (серия S-8261), сборка полевых транзисторов - KC3J1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

 

 

 

 

 

 

 

 

 

 

 

 

 

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Чтобы контроллер вновь подключил аккумулятор к "внешнему миру", то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от перезаряда? Как нам снова подзарядить "банку" аккумулятора, чтобы контроллер опять включил транзистор разряда - FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P,G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда - Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядное устройство подключено и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время - несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, можно узнать здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться "восстановительная" зарядка.

Восстановление завершено

Кроме всего прочего, в функционал микросхем защиты литиевых аккумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

MOSFET транзисторы

Полевой транзистор с изолированным затвором

 
MOSFET транзистор
MOSFET транзистор

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n - переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые). Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел - полупроводник) обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2). Еще одно, довольно распространенное название – МДП (металл – диэлектрик - полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFETмосфетMOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзисторы J-FET также являются полевыми транзисторами, но управление таким транзистором осуществляется за счёт применения в нём управляющего p-n перехода. Эти транзисторы в отличие от MOSFET имеют немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку МДП-транзисторы бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.

Упрощённая модель полевого транзистора с изолированным затвором
Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

  • Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

  • Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому "+"), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

  • Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в устройство полевого транзистора с изолированным затвором.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В транзисторе обеднённого типа в области канала уже присутствуют электроны, поэтому транзистор пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET транзисторов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET-транзисторы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или похожую. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому - напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологий изготовления полевых транзисторов удалось избавиться от этой проблемы. Современные полевые транзисторы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного транзистора. 

IGBT транзистор

Биполярный транзистор с изолированным затвором

В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют  БТИЗ. БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

IGBT транзистор - это довольно хитроумный прибор, который представляет собой гибрид полевого и биполярного транзистора. Данное сочетание привело к тому, что этот тип транзистора унаследовал положительные качества, как полевого транзистора, так и биполярного.

Суть работы IGBT транзистора заключается в том, что полевой транзистор управляет мощным биполярным транзистором. В результате переключение мощной нагрузки становиться возможным при малой управляющей мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

Внутренняя структура БТИЗ – это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.

Упрощённая эквивалентная схема БТИЗ
Упрощённая эквивалентная схема БТИЗ

Весь процесс работы БТИЗ может быть представлен двумя этапами: как только подается положительное напряжение, между затвором и истоком открывается полевой транзистор, то есть образуется n - канал между истоком и стоком. При этом начинает происходить движение зарядов из области n в область p, что влечет за собой открытие биполярного транзистора, в результате чего от эмиттера к коллектору устремляется ток.

История появления БТИЗ.

Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого транзистора с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

Несколько позже, в 1985 году был представлен биполярный транзистор с изолированным затвором, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобные недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (Iкэ max), а рабочее напряжение (Uкэ max) может варьироваться от нескольких сотен до тысячи и более вольт.

Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

Поскольку IGBT транзистор имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор - З (управляющий электрод), эмиттер (Э) и коллектор (К). На зарубежный манер вывод затвора обозначается буквой G, вывод эмиттера – E, а вывод коллектора – C.

Условное обозначение IGBT  
Условное обозначение БТИЗ (IGBT)

На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Транзистор также может изображаться со встроенным быстродействующим диодом. Также IGBT транзистор может изображаться следующим образом:

Изображение БТИЗ

Особенности и сферы применения БТИЗ.

Отличительные качества транзисторов IGBT:

  • Управляется напряжением (как любой полевой транзистор);

  • Имеют низкие потери в открытом состоянии;

  • Могут работать при температуре более 1000C;

  • Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.

Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока, в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.

Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. IGBT транзисторы можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.

Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных – транзисторам IGBT.

Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах.

 

счетчик посетителей сайта
Яндекс.Метрика

Политика cookie

Этот сайт использует файлы cookie для хранения данных на вашем компьютере.

Вы согласны?